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Scientific Computing and Workload

� High performance computing is a strategic tool for scientific
discovery and innovation

- Climate Change: Community Earth System Model (CESM)
- Astronomy: Supernova, Sloan Digital Sky Survey
- etc..

� Utilizing HPC system to simulate events and analyze the
output to get insights

Figure 1: Climate modeling and analysis
Figure 2: Typical scientific workload
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Big Data Problem

� Many scientific simulations become highly data intensive
� Simulation resolution desires finer granularity both spacial and

temporal
- e.x. climate model, 250KM ⇒ 20KM; 6 hours ⇒ 30 minutes

� The output data volume reaches tens of terabytes in a single
simulation, the entire system deals with petabytes of data
� The pressure on the I/O system capability substantially

increases
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Figure 3: Data volume of current simulations
Figure 4: Climate Model Evolution: FAR (1990), SAR

(1996), TAR (2001), AR4 (2007)
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Gap between Applications’ Demand and I/O System
Capability

� Gyrokinetic Toroidal Code (GTC) code

- Outputs particle data that consists of two 2D arrays for
electrons and ions, respectively

- Two arrays distributed among all cores, particles can move
across cores in a random manner as the simulation evolves

� A production run with the scale of 16,384 cores

- Each core outputs roughly two million particles, 260GB in total
- Desires O(100MB/s) for efficient output

� The average I/O throughput of Jaguar (now Titan) is around
4.7MB/s per node

� Large and growing gap between the application’s requirement
and system capability
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Decoupled I/O

A new way of moving computations near to data to minimize the
data movement and address the I/O bottleneck issue

� A runtime system design for our Decoupled Execution
Paradigm
� Providing a set of interface for users to decouple their

applications, and map into different sets of nodes
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Figure 5: Decoupled Execution Paradigm and System Architecture
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Overview of Decoupled I/O

� An extension to MPI library, managing both Compute nodes
and Data nodes in the DEP architecture.
� Internally splits them into compute group and data group for

normal applications and data-intensive operations respectively.
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Figure 6: Overview of Decoupled I/O
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Overview of Decoupled I/O

Involves 3 improvements to existing MPI library:

� Decoupled I/O APIs

� Improved MPI compiler (mpicc)

� Improved MPI process manager (hydra)

	
  

Data node Compute node 

MPI Runtime 

void func(…) 
 
main() { 
    MPI_Init(…); 
 
    MPI_Op myop; 
    MPI_Op_create(func, myop) 

 …. 
    computation(); 
    MPI_File_decouple_xxx(in, out, 
my_op); 
    compute(out); 
} 

void func(…) 
 
main() { 
    MPI_Init(…); 
 
    MPI_Op myop; 
    MPI_Op_create(func, myop) 

 …. 
    if (rank < n) { 
        computation(); 
         MPI_File_decouple_xxx(in, out, myop);

  
         compute(out); 
    } 
   if (rank > n) { 
        wait_for(request) 
        processing(); //including I/O 
        send_result(); 
    } 
} 

Mpicc code trans  

mpirun mpirun 
User Implemented Code 

Figure 7: Decoupled I/O at runtime
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Decoupled I/O API

� Abstracting each data-intensive operation with two phases:
traditional I/O and data processing

� Providing APIs to treat them as an ensemble with different
file handler design, and data op argument

Table 1: Decoupled I/O APIs

MPI File decouple open(MPI Decoupled File fh, char * filename, MPI Comm comm);
MPI File decouple close(MPI Decoupled File fh, MPI Comm comm);
MPI File decouple read (MPI Decoupled File fh, void *buf, int count, MPI Datatype data type,

MPI Op data op, MPI Comm comm );
MPI File decouple write(MPI Decoupled File fh, void *buf, int count, MPI Datatype data type,

MPI Op data op, MPI Comm comm );
MPI File decouple set view(MPI Decoupled File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char * datarep, MPI Info info, MPI Comm comm);
MPI File decouple seek(MPI Decoupled File fh, MPI Offset offset, int whence, MPI Comm comm);
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Decoupled I/O API Example

Traditional Code

int buf;

MPI File read(fh, buf, ...);

for(i = 0; i < bufsize; i++) {

sum += buf[i];

} ...

Decoupled I/O Code

/* define operation */

int sum op(buf, bufsize) {

for (i = 0; i < bufsize; i++ )

sum += buf[i];

}

....

MPI op myop;

MPI Op create(myop, sum op);

MPI File decoupled read(fh, sum, myop, ....);

...
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Process/Node management

� Data nodes and compute nodes are at the same level
belonging to two groups

� “mpirun -np n -dp m -f hostfile ./app” to run an application
with n compute processes and m data processes

� All of them belong to the MPI COMM WORLD
communicator with distinguished rank

� Each group has its own group communicator
MPI COMM LOCAL as an intra-communicator,

� MPI COMM INTER communicator as a group-to-group
inter-communicator between the compute processes group and
data processes group.
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Code Decoupling & Compiler Improvement

� Identify the process type, compute process or data process,
with its rank in MPI COMM WORLD to execute different
codes

� Data process code is automatically generated by mpicc with
hints defined by macros MPI DECOUPLE START and
MPI DECOUPLE END

� MPI Op for defining offloaded operations that have to be
registered at the before MPI DECOUPLE START.
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Decoupled I/O Implementation and Prototyping

� Completely based on MPI library

� Gather the tasks from compute processes, and scatter them to
data process.

Data node Compute node 

MPI Runtime Compute processes Data processes 

MPI_Gather:  
tasks collective 

Tasks at master 
process 

Tasks at master 
process 

MPI_Scatter 

MPI_Send(request) 
(MPI_COMM_INTER) 

MPI_Gather 
MPI_Scatter:  
results 

MPI_Recv(results) 
(MPI_COMM_INTER) 

Figure 8: Decoupled I/O prototype
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Platform and Setup

Platform:

Name DISCFarm Cluster(small), Hrothgar Cluster(large)
Num. of nodes DISCFarm: 16 nodes, Hrothgar: 640 nodes
CPU DISCFarm: Xeon 2.6GHz, 8 cores,

Hrothgar: Westmere 2.8GHz, 12 cores
Memory DISCFarm: 4GB/node, Hrothgar: 24GB/node

Evaluated Operations:

Data assimilation (ENKF) read the data, and apply EnKF algorithm (including 6 matrix multiplications,
1 matrix addition, and 1 matrix substitution), then write almost the same size data

Flow-routing compute the direction where fluids flow to
Summation calculates the total value of all specified data elements
Lookup searches for and returns all elements that meet given criteria
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Results and Analysis

� Compared against Active Storage (AS)
� 2 storage nodes, 4 data nodes and 8 compute nodes for

DEPIO, 12 compute nodes for AS
� Around 13% improvements
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Figure 9: Performance Comparison of Decoupled I/O and Active Storage I/O (Observed CPU usage on storage

nodes: 1.3%)
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Results and Analysis (with resource contention)

� Workload on storage nodes has great impact on Active
Storage performance

� DEPIO keeps better performance than AS with less impact
from workload on storage nodes
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Figure 10: Performance of Decoupled I/O under Different CPU Usages on storage nodes
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Results and Analysis

� Up to 60 nodes in the Hrothagar cluster

� Compared against traditional storage I/O (TS)

� Observed 25% performance improvements
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Figure 11: Emulation Performance of the Decoupled I/O
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Overhead of the Decoupled I/O

� Primary overhead comes from the communication, Gather,
Scatter, etc...

� As the data size of each I/O request increases, this overhead
is observed to decrease steadily

20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

4KB	
   32KB	
   128KB	
   512KB	
   2MB	
   4MB	
  

Ra
#o

	
  

Data	
  size	
  of	
  each	
  I/O	
  opera#on	
  

Communica#on	
  Overhead	
  of	
  
Decoupled	
  I/O	
  

communica7on	
  

data	
  processing	
  

Figure 12: Overhead of the Decoupled I/O Operation
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Conclusion and Future Work

� Big data computing brings new opportunities but also poses
big challenges

� Dedicating data nodes for data-intensive operations can be
helpful and critical for system performance

� An initial investigation of runtime system design to decouple a
task into compute-intensive and data-intensive phases

- Beneficial because of less resource contention, and reduced
system wide data movements.

� Prototyping were conducted to evaluate the potential of
Decoupled I/O

� Plan to investigate the feasibility of the integration with the
MapReduce and in-memory computing model
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Thank You
For more information, please visit: http://discl.cs.ttu.edu
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